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T Introduction

[hercare 1111 ¢ approaches 1o establishine radar reflectivity < rain ate relations. The
oripinal tocstimategainlall using radanmcas nrernents was hised onthe phivsical
relation between the rainparamcters (rainrate /v, diop size density function) and the vad an
rellec tivity cocflicient Z (see cop  Rvde 1916, Marvsh all and Palimer T IS) Onginally o siiple
pow (NN 7 (1" was usedl Subsequentrcgrossion analyvses of measured data consisting ol
stimtiltancons Observa tions obvainintensitics and raratrellectivities have produced a plethora
olpower-laaw 7. zi velations showine laroe vaviations e the value of the cocliicient a and the
exponenth(sce ¢ Battan. [973).

More recently, phivsically hased re-lations involvine the drop size distiibution (DSD) ex-
plicitly wecre proposed by Ulhrich (19 83), 1 hevesulting 7 I velations ave para et zed by
the DS pavameters. *1 he DSD mod el proposed by Ulbrich is thatol a1 distributionwith
1111 CC paramcters, As n the simpler power iy modelsdifferentcombinations ol vadues of
these paramcet ers canpro duce tii 1ee dillerences between pain intensitios rel ated to the same

riadar rellectivity (see e g Kozu [991).

These firsttw o approachies, the power law andthe DSD hased mothod, 1 salt i para
metrie closed form 7 R relations, the former usine cimpitical (z. 1) information and the
Lotter using larveely the oretical considerations (althoneh ostilln ce@s< disdrometerdatato
modiel the DS itsel 1y, <1 he inevitable variations i the pavameters involved, be they o and
ban the case of the simple power i\, orthe DSH parametersin the case o fthe drop sive
distribution, produce lavpe ambign ities i the re=altme relatio nse I the case ol power law
relations s('\'('l'zi‘émt]uns]m\'v|)IUl’“'\"‘isnl)_imll\ml.s\\iliunliun('|il('l’}.’ltul(‘(]n('r 111( *sean
Dipuities (sce coe Austin 1987 ). Ty pical clissilvinge |, atevories include dnzzle, thunderstorny
rain, wide spread vain, convective cell e etchithe case o0 DSD based ra:lations, the am
biguitics could bhe reduced ib more were known abonrthe conrelationbetween the panranmet ers
imvolved, and il the parameter s themsel ves comld ne estirna ted inca more robust w ay, thus

tightening the range of vislues that they are allowed vo rak ¢

hi order to reduce these ambipuitios. analvoeebordifferent third approach to rela te 7
to 11 was oniginally proposced by Calheiros and Z0veads K (1987), and Tater developed and
extendod by Atlas and Rosenl eld (sce coon Nrdas ot 19190, Rosenfeld et al 1993). I its
present form, the resalting, “probability matchne v hod” (PMA) seeks 1o classily the tvpe
ol tain athand using, objec tiv e criteria b foreselecy o the appropriate 7 Rorelation. Rathe
than expressing the Z I rclation m terms of o enven <ot ol raim paramet ers, the mothod
irst  classifies the  rain accordime toquantitative X« tobusteriteria, then derives the

appropriate Z frelation divectly from Z and IV data collected from sample evenits ¢ oy crned



by that particalar regnme. The vesulting rolations are the refore not given by analviic closed
form expressions, but they are Just as clliciently computable as the pavametric closed form

relations descrt hed above.

Lo this paper \N\NCC attampttomathematically justify the two cinpirical approaches 10 the
problem ol deriving Z I relations:the N ONNCL Law regressionand the PNIM . Ineach carseow e
explicitividentify the hasic mathomaticalassimptionsthatapply,and \\ "¢ showinwhatway
ey leadtoapower Taw relation, i the first case, and a “probability matched™ relation in

the sceotl (1. Thetwomathematicalsituationswhichwe considerare

)y With hittle o1 no aprion calssification ol the rain event according to chimatological,
phvsicalorgcornetric considerations, how should one use silllle:1(oils (/. /1) mcasure
mentsto derive theoptimal Z Rielation v i chiminimiz es the viarian ce ass ociatedto
this (porhaps quite large) class of vain ¢ venits,

200 i carclul aprnori classilication of the ram eventaccor ding to climatologi cal, phyvsical
and geomaetrice considerations, how should one use Z and f-mca surements to derve

the exa ct Z R ovelation associat ed with the particalar raim regime at hand.

The main diflerence is i the amount of eflort one decides to expend a prior in classifying,
therainevents according to the relovantelimatolog ical fphysi cal /gcornetric conside rations,
In cach of the two cases, \\ ¢ makesurethatthe Z Rrclationwhich \\ ¢ derive is optinal
accordmg to the mathematic alassumptionsmad e, This ensures that, given a particulonrain
event, the estimates obtained nsing, cither one of these two approa chies combe 1igorously
Justificd withoutresorting to ¢ xtrancous assunptions.

The first set ol assimptions leads 10 a7 Boelation akin to the power T\ 7 (wnr"
Iis discussed i section 20 whiere we also show how the power law ¢ an he considered an
approxnnation ol the optimar 7 Roaclation in this case. 1oosection 3, w ¢ show how the

second set of assumptions natur ally leads 1o (e - probability matching method™.

A\ (7 end this section with aremarkonthe terminology, 17NN CH Lawsand DSD based
relationshave oftenbeenrelert ¢@ toas «aceer ministic™, while the PMNM has often hoen cal led
“Statistical ™. Phe selabels are manifest v inap propriate sinee the power-law rclation and the
PAMMare bothbasedon Z-and It mcasurements:thevare 111 '1¢ '1701(" cquatly cmpirical.In
factit can be arpued that the DSD ba sed method is itsell also empirical sinee in order to
use it one needs tomodelone’s 1)S1) (i.e.estimate its paramcters) fromraim drop datin, To
the exic me that it (o¢s 1101 rely on(Z, 1) data however, w e shall not include 1t further i
the detar led discussion that follows.



2 7 I usimg no a priort classification

L this cases A\ ¢ assumiethatalavee 111111111 1 olcarelul nimmmineoits (7. R hmcasurenments
were collected during one ormore typical rain ey onts, and thata sarnplod joint probability
density function Pz has been compiled. Without accounting for peomcetyic effects that can
cavise non-untformities in the Z and IPomcasurements, and without classilying the dillerent
phases thatthe rain O\ Cili(s) pocs through during, its evolution in time, 7 and 2 will he
corre lated butnotwith probability 1. 1 hatis, there will he no one-to one ¢ o 1rrespondence
hetween mcasured reflectivity levels and single pointrain-rate figures. In this case therelor e,
it is not reasonable to look for a det erministic 7 1 relationship. Rath cro the hest one can
do under these assmmptions is to look for a function R /(7)) which makes, onaverape, the
smallesterroras cal culated fromthe obser veo (Z. B mcasmements. That is, w e lookfor f
which imakes the quantit y

l(/() ) 27)( sy (2or)dr (1)

as small as possible for every value = ol 7. To find such a function f(z ), letus restate the
problem by cal ling &« f(2), and tiving, to

maninze Gla) 7 (., 7 I')Z//)(y';;)( sor)dr ()

Once formutated in these teorms, the problennis casy to solve: diflerentiate GLoset the deriva
tive equalto 0, and find the corvesponding o i.e. th e corresponding value of [(2). Practically,
the derivative ol (s

() - ‘.)./(.r» YD) die ()

which is zero exactly when

N (/‘]“%,“)(i.l')(]l') - </ Iz ”/)(,/";)(:‘7.)(/[,> . (‘ (l)

T Poreor)dr
[ rPan (o )dr
.. f(z) s the conditional mean of 12 given that 7 ¢ = 1o the pro cess of deternmiming,
the appropriate (i.e. optimal) Z R relationship in this case, we have re-dernonstrat ed that.,

without additional @ priori assumptions, the conditionalmeanis the estimate that mininnzes

Thus

I(=)

7oy ()

varic mcee while tryimg to estimiate the value of one vanable, B given the value of anothier
variable, Zowhen then joint donsity funetion is “lonown ™. e suitably sampled.

Yet, 1 this case, traditionally, scientists have sou ght to derive power-law relations of
the form 7 = o ", How is this related to our statistically optit nal approach 7 O procedure



docs not rely on any lognormality assumptions about the joint distvibution of (/. I?): the
optimal approach uses the observed samples to infer divectly the appropriate relation, namely
the conditional imean. I the conditional ican of 12 given 7 does turn out to be a power-law
function ot Z. thien w hiet herone caleulates the power-law parameters « and b diveetly from
the conditional mean o1 by performing, a regression on the data, oneshould obtain the saune
valuies for a and b However il the conditional vircinn of 2 given 7 s not exac tly a power

law function of Z, the power-law regressionwould g1 acorrespondingly inaccurate lit.
Figure 1reproduces an ex ample due to Shortet it ( 1993), showing onie instan ce inwhich no
single power i canadequately deseribe the governing, 7 I vel ation.

The main drawback of the approach. w hethier one choses to parametrize the resulting,
Z I relation or t o use the optimal relation expressed by the conditional mean. is that it
requires amunberof samultaneous and co-localed (2. R)micasurements that is large cniongh
to build a suitably accurate joint donsity function Py gy Inpractice, it is quite diflicult 10
make mceas urements of the pain (7, 1Y) that canbe considered silitititi(Coils. Inaddition, it
is diflicultto collect a sullicientlvlarge numboer of sinnplesand make sure of the homogeneity
of the resulting (7, ) populationis is important becanse if the sample population is
not tolllo{l,"11(oils, the resulting eclectic collection of samples will put one in the predicament
01 “compuaring applesand orang os™. T'he exa m ple of ligure | iullustrates just how this
can happen. <1 he problem ha s hoen discussed in dotail in (Rosen feld et s, 1993). Aside
from changes in the physical Taws governing the rain, suchias growth, evaporation, melting,
coalescence, break-up  and wind eflects, all of which can alter the particle size distribution
and chanige the rain regime, anothenmajorcauscofinhomogeneitvis the radar he sam patt ern
whicl is superimposed on the true rain reflectivity, resulting inbeam spreading and pa ot ial
bheam filling, eflccts,

still, to the extent that these pitfall s are recognized, the conditional-mean approa ch
doseri bed above does give a 7 I velation which, among all possible formmla s one can use
to rclate Zand 7, makesthesmallestr s .errorundear thescassumplions. *1°11¢ drawbacks
discussed above highlight the factthat while this error is minimal, it is not nccessarly small.
m i, the 1717017 can 3¢ estimateddirectly from the silltinCoils (7, /) mcasurements: it
is piven by the square root of the {(conditional) sample varance, i.c. hy the se atterin the
joit (7, By micasur ements. When this scatt er is larpe, the u sefulness of the resulting 7 1?
relation is uncertain,

@




3 /- R using comprchensive a prior classification

e o011 toavoidhaving a Z 12 relation based on measurements wit hoa relati vely large
vanance, and, Crerore, 1o avold making a correspondingly lTarge 1.1 s, errorionemig ht
try to ¢ arcfull v classily one’s data a priori. Spectlically, let us assume that the vain events
have been classilied according to the relevant clim atologi cal, physical and geometric eriteria
accurate ly enough t hat one canrcasonably expect to associate to a given rain event a unique
exacl /7 R orelation B = [{7Z). Under these assumptions, 1101% canone ofliciently determine

the appropriate (deterministic) luncetion [ given measured samples of Z and R

letus show  that. in this case, simultancous mca surcimernits are not needed. Ind eed.
suppose that we have adentified the rain regime of interest, and that we have enough 7+
and R-mca surement s from event s that fall with in thi s regime to construct thei respective
probability density functions 77 and 77 (note that this requires much fewer samples tha n
in the previous approa ch). By definition, Py gives the likelihood that 7 will fall within a
given interval, Thus, for any two possible values a < b of 7.

h
/‘7'7(,/) vr  pifa<Z < b} (6)

S

We are assuming that f(z) = IO we assume further that [ s strictly incrcasing (so that.
in particular, its derivative is never zero), equation (6) can be rewritten a's

2
/ Pl L= pr{e < 7 < b} o)
pr{fla) < I < [(b)} since [ is monotone (s)
S (&)
/ Pr{t)dl (9)
Jf{n)
b v
: 771:‘(./“' ))/’(l)(}l ) (lo)

"

Put togethier, these ident ities imply that the integral in the left-hand-side of (7) must equal
thatin the right-hand-side of (10) for ai1 a,b. Since the integrals must be the same over al]
intervals of mtegration, it follows thi it the integrands themselves must be equal everywhere.
In particular, setting « = 0 andrenaming b 2, this iimplies that

[ Potode - [T n0s [ o an
o " Jo : R ’ '

This equation tells us how to use the density functions 77, and 7 to compute f(z). Namely,
given a refllectivity val ue z, the correct rain rate that one should associate to it is thatvalue



T(2) which makes the right-hand-side of (1 1) cqual to its left-hand-side. 11 other words,
cquation (11 ) givesan [~11¢<iiv( formulalorcomputing theoptimal 7 12 relationin this ¢ ase.

In practice. itwill ravely be possible to classify the rain (3ireitis so comprehensively as
to enidup wit h rain regimes cach having a unique exact 2 R relation. o\ small amount of
uncertainty, due to intrinsic residual ambiguity (cansed, for example, by the complex scat ter-
ing interactions from the imdividual drops) and 10 residual geo metrie e rrors, will inevita bly
remain. How does that aflect the accmacy and applicability of the 7 R relation obtained
using for mula (11). derivedund eridealized assmmptions ?

To address this question, let us suppose that instead of ane xactrelation f(7): 71,
we postulate the existence of a relating, function /- which produces a “noisy™ 7 11" relation.
Mathernatical Iy, we ave assuming, that there exists an inercasing, function £ such that

/(z, 1) 1,1 .\ (12)

where Nis arandom variable representing additive noise. and where, to justify the additivity
of this source of residual randornmess, we 11 sed the dB variables 7, 10 log (7)) and Ry -
101og,,,(F), instead of Z and R thiemselves, Given actual data, if we now compute a relating
function 1 according to formula (11), i.c.a lunction which satisfies

e

> )
[ Pty i )l (13)

how close will this 77 cor ne to the actu al (optimaly Z I function /772 Well, 111101 (1 theabove
hypothesis (12),

[l7yd (c)de pr s, ) (1)

prid 70 < (2 (15)
pr{li, « \ < I'(z)} (16)
/II P o (dt. i’

Putting (13) and (17) together, this imphies that and P ave 1Clire (1 by

r

](") rf '
/ P (e 1 Ty, sU)de (18)

To pet a quantitative answor, let us make the simphitving assumption that By and N a1
imdependent, and that they are both Gaussian,  winthi Vhaving o mcan. Bqguation (18) then
nnplies that

P) o B2 ok LY, (19)



where a = 0.h0% /o?, i's onc- hal [ the ratio of the variances o f N and 1y, and where
N Ry

E{1 Y denotes the average dBR in this rainregime. Thus 17 under-estimates 1 at above
average ram rates, and over-estimates I+ at helow-average rain rates, by amount s that are
proportional to the ratio a of the noisy variation to the true variation. Converting, back from
logarithmic quantities, it we write /72 10log ([) and o100 l()gm(_/")‘;md it werewrite
cquation (19)in 1( rs of the ideal fand the retrieved [owe find that the relative erron s

%

;e r [ (20)

where Ifis € he average rain rate in this rain regime. Thus, ¢ wee assume that the noisy
variati on is 20% as big as the trae variation, i.e. that oy = 0.2 0, (so that o @ 0.02), in
orderforthe relative error to exceed H%  theratio 7/ [ must either fall 1)( "1o\% (). ()8, or it
must ¢sCee@ 11, This mca ns that even with a random variation that is 20% as big as the
tr ue variation in the rain rate, t he relative error incur red inusing t he 7 IR relation given
by the “probability-inatching”™ formula ( 11 ) willnot exceed 5% atrainrates thatlic in the
interval [(). 12, 10 1¢Jaboutthe average rain tiit(, .

T'his ap proachis the one adopted by Rosenfeld etal (1993) to iinplement the “probability
matching method™ (PMM). The classification crit eria used in the P MM are

a) the ellective efliciency, 1.e. the relative difference hetween the cloud top and cloud
bottom vapor sat urat ion mixing ratios

1)) the bright hand fraction, i.c. the [rtaction of the radar echo area in which the maximal
reflectivity oc curs within:i 1.h km of the 0°9C- isotherm

¢) the horizontal reflectivity gradients

(1) the freezing level itself,

The 7 110 rolation obtained as deseribed above using these classification criteria has vielded
quite accurate estimates of the ncar-surface rain rate for tropical rain sy sterns ncar Darwin,
Australia, as werl as for winter convective rain systems in Isracl, We refer to (Rosenfeld et
al 1993) for a detailed discussion of the results.

4 Conclusions

The threekinds of Z- I relations, power- law regressions, DSD-based ro-lationsand the PNM,
are not directly comparable b ecau se they start with different underlying mathematical as-
sumptions. The power laws arc approximations 1( 1 the optimmal relations when the ori ginal

9



data is largely uncategorized. The PMN is the optimal relation when the original data is
completely classified a prior ic and remains quite close to optimal if sor ne residual randot n-
ness is st present after classification. The DS based relations are not a priori empirical.
Derived from deterministic physical consider ations, they pavametrize the 7 [t relation using,
DSD paramcters whose app ropriate values, however | noust be independently specified, for
example using (empirical) drop size estimates,
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Figure caption

Figure 10 Convective and stratiform rain regimes of tropical squall lines in Darwin, Australia
Reflectivity factor versus rain rate observed on January 26, 1989, between 1800 and
2400 local time {after Short et al, 1993).




